Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway.
نویسندگان
چکیده
Skeletal muscle size is regulated by anabolic (hypertrophic) and catabolic (atrophic) processes. We first characterized molecular markers of both hypertrophy and atrophy and identified a small subset of genes that are inversely regulated in these two settings (e.g. up-regulated by an inducer of hypertrophy, insulin-like growth factor-1 (IGF-1), and down-regulated by a mediator of atrophy, dexamethasone). The genes identified as being inversely regulated by atrophy, as opposed to hypertrophy, include the E3 ubiquitin ligase MAFbx (also known as atrogin-1). We next sought to investigate the mechanism by which IGF-1 inversely regulates these markers, and found that the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway, which we had previously characterized as being critical for hypertrophy, is also required to be active in order for IGF-1-mediated transcriptional changes to occur. We had recently demonstrated that the IGF1/PI3K/Akt pathway can block dexamethasone-induced up-regulation of the atrophy-induced ubiquitin ligases MuRF1 and MAFbx by blocking nuclear translocation of a FOXO transcription factor. In the current study we demonstrate that an additional step of IGF1 transcriptional regulation occurs downstream of mTOR, which is independent of FOXO. Thus both the Akt/FOXO and the Akt/mTOR pathways are required for the transcriptional changes induced by IGF-1.
منابع مشابه
Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملMammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways.
The phosphatidylinositol 3-kinase (PI3K)/Akt and mTORC1 pathways are frequently activated, representing potential therapeutic targets in acute myeloid leukemia (AML). In 19 AML samples with constitutive PI3K/Akt activation, the rapamycin derivative inhibitor everolimus (RAD001) increased Akt phosphorylation. This mTOR C1-mediated Akt up-regulation was explained by an insulin-like growth factor-...
متن کاملMammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade.
Mammalian target of rapamycin (mTOR) inhibitors, such as rapamycin and CCI-779, have shown preclinical potential as therapy for multiple myeloma. By inhibiting expression of cell cycle proteins, these agents induce G1 arrest. However, by also inhibiting an mTOR-dependent serine phosphorylation of insulin receptor substrate-1 (IRS-1), they may enhance insulin-like growth factor-I (IGF-I) signali...
متن کاملInsulin-like growth factor I-mediated protection from rapamycin-induced apoptosis is independent of Ras-Erk1-Erk2 and phosphatidylinositol 3'-kinase-Akt signaling pathways.
The mTOR inhibitor rapamycin induces G1 cell cycle accumulation and p53-independent apoptosis of the human rhabdomyosarcoma cell line Rh1. Insulin-like growth factor I (IGF-I) and insulin, but not epidermal growth factor or platelet-derived growth factor, completely prevented apoptosis of this cell line. Because the Ras-Erk1-Erk2 and phosphatidylinositol 3'-kinase (PI3K)-Akt pathways are implic...
متن کاملInsulin-like growth factor 1 receptor-mediated cell survival in hypoxia depends on the promotion of autophagy via suppression of the PI3K/Akt/mTOR signaling pathway
Hypoxia is widely accepted as a fundamental biological phenomenon, which is strongly associated with tissue damage and cell viability under stress conditions. Insulin-like growth factor‑1 (IGF‑1) is known to protect tissues from multiple types of damage, and protect cells from apoptosis. Hypoxia is a regulatory factor of the IGF system, however the role of the IGF-1 receptor (IGF‑1R) in hypoxia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 280 4 شماره
صفحات -
تاریخ انتشار 2005